Wij zijn onze website aan het vernieuwen.

Ontdekt u nog een pagina die niet klopt of hebt u een goede suggestie, laat het ons dan weten via webmedia@umcutrecht.nl.

Deze website maakt gebruik van cookies

Deze website toont video’s van o.a. YouTube. Dergelijke partijen plaatsen cookies (third party cookies). Als u deze cookies niet wilt kunt u dat hier aangeven. Lees meer over het cookiebeleid.

dr. K.G.A. (Kenneth) Gilhuijs Associate Professor

  • Image Sciences Institute

K.G.A. Gilhuijs


Research Programs


Dr. Kenneth Gilhuijs is associate professor at the University Medical Center Utrecht (UMC). He received his Ph.D cum laude in Medical Physics at the University of Amsterdam.

He heads a research group on prognostic imaging in breast oncology with emphasis on MRI. His team includes Ph.D. students and post-docs on the interface between diagnostic imaging, pathology, medical oncology, surgery, and radiotherapy. In 2010 he transferred from the Netherlands Cancer Institute to the University Medical Center Utrecht.

His research interests include translational imaging in breast oncology, machine learning, computerized decision support systems for personalized treatment of breast cancer, prognosis, and response monitoring.

Kenneth Gilhuijs is coordinator of the master’s course medical image processing at UMC and serves on scientific advisory boards such as that of the Dutch Cancer foundation (KWF).

Research Output (139)

Are contralateral parenchymal enhancement on dynamic contrast-enhanced MRI and genomic ER-pathway activity in ER-positive/HER2-negative breast cancer related?

van der Velden Bas H M, Bismeijer Tycho, Canisius Sander, Loo Claudette E, Lips Esther H, Wesseling Jelle, Viergever Max A, Wessels Lodewyk F A, Gilhuijs Kenneth G A 16 okt 2019, In: European Journal of Radiology. 121

Response monitoring of breast cancer on DCE-MRI using convolutional neural network-generated seed points and constrained volume growing

van der Velden BHM, de Vos Bob D., Loo Claudette E., Kuijf HJ, Isgum I, Gilhuijs KG 2019, 10950

Comparison of SUVmax and SUVpeak based segmentation to determine primary lung tumour volume on FDG PET-CT correlated with pathology data

Mercieca Susan, Belderbos José, van Loon Judith, Gilhuijs Kenneth, Julyan Peter, van Herk Marcel nov 2018, In: Radiotherapy & Oncology. 129 , p. 227-233

Contralateral parenchymal enhancement on dynamic contrast-enhanced MRI reproduces as a biomarker of survival in ER-positive/HER2-negative breast cancer patients

van der Velden BHM, Sutton Elizabeth, Carbonaro Luca, Pijnappel Ruud, Morris Elizabeth, Gilhuijs Kenneth nov 2018, In: European Radiology. 28 , p. 4705-4716

Perfusion in the contralateral breast on preoperative MRI may complement ER-pathway activity from the index tumor to stratify outcome of endocrine therapy for early-stage invasive breast cancer

Van der Velden B., Bismeijer T., Canisius S., Loo C., Lips E., Wesseling J., Viergever M., Wessels L., Gilhuijs K. apr 2018, In: European Journal of Cancer. 92 , p. S49-S50

System for Image-Guided Resection of Non-Palpable Breast Lesions:Proof of Concept

Arsenali Bruno, de Jong Hugo W A M, Viergever Max A, Gilhuijs Kenneth G A 2018, In: Medical Physics. 45 , p. 2169-2178

Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes

Schmitz Alexander M Th, Teixeira Suzana C, Pengel Kenneth E, Loo Claudette E, Vogel Wouter V, Wesseling Jelle, Rutgers Emiel J Th, Valdés Olmos Renato A, Sonke Gabe S, Rodenhuis Sjoerd, Vrancken Peeters Marie Jeanne T F D, Gilhuijs Kenneth G A 2017, In: PLoS ONE [E]. 12

Additional value of (18)F-FDG PET/CT response evaluation in axillary nodes during neoadjuvant therapy for triple-negative and HER2-positive breast cancer

van Ramshorst Mette S, Teixeira Suzana C, Koolen Bas B, Pengel Kenneth E, Gilhuijs Kenneth G, Wesseling Jelle, Rodenhuis Sjoerd, Valdés Olmos Renato A, Rutgers Emiel J, Vogel Wouter V, Sonke Gabe S, Vrancken Peeters Marie-Jeanne T 2017, In: Cancer Imaging. 17

Preoperative indication for systemic therapy extended to patients with early-stage breast cancer using multiparametric 7-tesla breast MRI

Schmitz A M T, Veldhuis W B, Menke-Pluijmers Marian B E, van der Kemp W J M, van der Velden T A, Viergever M A, Mali W P T M, Kock Marc C J M, Westenend Pieter J., Klomp D W J, Gilhuijs K G A 2017, In: PLoS ONE [E]. 12

Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI:a feasibility study

Chan HM, van der Velden Bas H M, Loo Claudette E., Gilhuijs Kenneth G A 2017, In: Physics in Medicine and Biology. 62 , p. 6467-6485

All Research Output (139)
To top