Wij zijn onze website aan het vernieuwen.

Ontdekt u nog een pagina die niet klopt of hebt u een goede suggestie, laat het ons dan weten via webmedia@umcutrecht.nl.

Deze website maakt gebruik van cookies

Deze website toont video’s van o.a. YouTube. Dergelijke partijen plaatsen cookies (third party cookies). Als u deze cookies niet wilt kunt u dat hier aangeven. Lees meer over het cookiebeleid.

E. (Erik) Verburg PHD Candidate - OIO

  • Image Sciences Institute

Contact

Research Programs

Biography

Erik Verburg obtained his MSc degree in Technical medicine in 2011 at the University of Twente. His master thesis on MRI guided HIFU treatment of breast cancer with adjuvant MRI guided radiotherapy  was performed at the Image Sciences Institute under supervision of dr. Kenneth Gilhuijs. After graduation he worked for four years for Opthec BV as a senior development engineer. He was responsible for the development of new optics to be used in implantable intraocular lenses and the implementation of new manufacturing processes.  

Currently he is a PhD candidate in the group of dr. Kenneth Gilhuijs, working on the DENSE Trial project. In this trial, where women with extremely dense breast are screened using MRI, the aims of his project are to reduce the number of false positive follow up and breast cancer risk prediction using advanced breast MRI image processing.

Research Output (3)

Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts

Verburg Erik, Wolterink Jelmer M., de Waard Stephanie N., Išgum Ivana, van Gils Carla H., Veldhuis Wouter B., Gilhuijs Kenneth G.A. 1 okt 2019, In: Medical Physics. 46 , p. 4405-4416 12 p.

Eligibility of patients for minimally invasive breast cancer therapy based on MRI analysis of tumor proximity to skin and pectoral muscle

Merckel LG, Verburg Erik, van der Velden Bas H M, Loo Claudette E., van den Bosch Maurice A A J, Gilhuijs Kenneth G A 2018, In: The Breast Journal. 24 , p. 501-508

Automated Segmentation of Pectoral Muscle in MR Images of Dense Breasts

Verburg E, de Waard S N, Veldhuis W B, van Gils C H, Gilhuijs KGA jun 2016, In: Medical Physics. 43 , p. 3330

To top