Wij zijn onze website aan het vernieuwen.

Ontdekt u nog een pagina die niet klopt of hebt u een goede suggestie, laat het ons dan weten via webmedia@umcutrecht.nl.

Deze website maakt gebruik van cookies

Deze website toont video’s van o.a. YouTube. Dergelijke partijen plaatsen cookies (third party cookies). Als u deze cookies niet wilt kunt u dat hier aangeven. Lees meer over het cookiebeleid.

M. (M) Zreik PHD Candidate - OIO

  • Image Sciences Institute

M. Zreik

Contact

Research Programs

Biography

In 2008 Majd obtained his Bachelor of Science degree in Biomedical Engineering at the Technion – Israel Institute of Technology, Haifa, Israel. In 2010 he received his Master’s Degree also in Biomedical Engineering at Tel Aviv University. His master’s thesis focused on signal processing techniques on in-vivo brain signals. From 2010 until 2015 he worked as algorithms engineer/team leader in the biomedical industry. In 2015 he started as a PhD-candidate at the Image Sciences Institute at UMC Utrecht where his main area of research is assessment of cardiovascular risk from Coronary CT Angiography (CCTA). Majd is interested in image processing, quantitative imaging and machine learning.

Research Output (9)

Machine learning for coronary artery disease analysis in cardiac CT

Zreik Majd 14 jan 2020, 164 p.

A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography

Zreik Majd, van Hamersvelt Robbert W, Wolterink Jelmer M, Leiner Tim, Viergever Max A, Isgum Ivana jul 2019, In: IEEE Transactions on Medical Imaging. 38 , p. 1588-1598 11 p.

Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis

van Hamersvelt Robbert W., Zreik Majd, Voskuil Michiel, Viergever Max A., Išgum Ivana, Leiner Tim mei 2019, In: European Radiology. 29 , p. 2350-2359 10 p.

Direct prediction of cardiovascular mortality from low-dose chest CT using deep learning

Van Velzen Sanne G.M., Zreik Majd, Lessmann Nikolas, Viergever Max A., De Jong Pim A., Verkooijen Helena M., Išgum Ivana 1 jan 2019,

Generative Adversarial Network for Segmentation of Motion Affected Neonatal Brain MRI

Khalili N., Turk E., Zreik M., Viergever M. A., Benders M. J.N.L., Išgum I. 1 jan 2019, p. 320-328 9 p.

Improving myocardium segmentation in cardiac CT angiography using spectral information

Bruns Steffen, Wolterink Jelmer M., Van Hamersvelt Robbert W., Zreik Majd, Leiner Tim, Išgum Ivana 1 jan 2019,

Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis

Zreik Majd, Lessmann Nikolas, van Hamersvelt Robbert W., Wolterink Jelmer M., Voskuil Michiel, Viergever Max A., Leiner Tim, Išgum Ivana 1 feb 2018, In: Medical Image Analysis. 44 , p. 72-85 14 p.

Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions

Lessmann Nikolas, van Ginneken Bram, Zreik M, de Jong Pim A., de Vos Bob D., Viergever Max A., Isgum Ivana 2018, In: IEEE Transactions on Medical Imaging. 37 , p. 615-625

Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks

Zreik M, Leiner Tim, De Vos Bob D., Van Hamersvelt Robbert W., Viergever Max A., Isgum Ivana 15 jun 2016, p. 40-43 4 p.

To top